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The variations of X-ray diffraction intensities from a crystal in the presence of a

permanent external electric field is modeled analytically using a first-order

stationary perturbation theory. The change in a crystal, induced by an external

electric field, is separated into two contributions. The first one is related to a

pure polarization of an electron subsystem, while the second contribution can be

reduced to the displacements of the rigid pseudoatoms from their equilibrium

positions. It is shown that a change of the X-ray diffraction intensities mainly

originates from the second contribution, while the influence of the pure

polarization of a crystal electron subsystem is negligibly small. The quantities

restored from an X-ray diffraction experiment in the presence of an external

electric field were analyzed in detail in terms of a rigid pseudoatomic model of

electron density and harmonic approximation for the atomic thermal motion.

Explicit relationships are derived that link the properties of phonon spectra with

E-field-induced variations of a structure factor, pseudoatomic displacements

and piezoelectric strains. The displacements can be numerically estimated using

a model of independent atomic motion if the Debye–Waller factors and

pseudoatomic charges are known either from a previous single-crystal X-ray

diffraction study or from density functional theory calculations. The above

estimations can be used to develop an optimum strategy for a data collection

that avoids the measurements of reflections insensitive to the electric-field-

induced variations.

1. Introduction

The interaction of a permanent external electric field (E-field)

with a crystal generates a number of phenomena, which are of

great interest for both technical applications and fundamental

– theoretical and experimental – research. On a macroscopic

scale, these phenomena are well known as dielectric polar-

ization, piezoelectricity, ferroelectricity and pyroelectricity

and can be described phenomenologically (Landau & Lifshits,

1977) or semi-empirically (Levine, 1969; Harrison, 1980).

Experimental techniques for the measurement of dielectric,

piezoelectric and pyroelectric moduli (Haussuehl, 1983) are

well developed. However, such kinds of experiments do not

provide any elucidation of the microscopic origin of the effects

on an atomic scale.

X-ray diffraction looks a promising tool to investigate the

response of a crystal to an external E-field at the microscopic

level. However, owing to experimental reasons, the maximal

strength of an external E-field that can be applied to a crystal

(10 kV mm�1) is several orders of magnitude smaller than the

inner-crystal field. Therefore, the study of small E-field-

induced changes in electron and nuclear subsystems is a big

challenge for an X-ray diffraction experiment. Only a few

works dealing with this approach have been published so far.

Fujimoto (1982) has studied structural changes in crystalline

LiTaO3 and LiNbO3 using the modulation–demodulation

technique and a conventional X-ray tube. A modified

experimental set-up with a movable X-ray tube and a movable

detector has been proposed by Aslanov et al. (1989).

Synchrotron radiation has also been implemented in recent

years. This type of study of electric-field-induced structural

changes was initiated by Graafsma et al. (1993, 1998) and

Reeuwijk et al. (2000a,b, 2001), who investigated KD2PO4 at

the European Synchrotron Radiation Facility. Stahn et al.

(1998, 2001) have investigated the change in a structure of

GaAs/ZnSe compounds at HASYLAB. Davaasambuu et al.

(2003) (HASYLAB) and Guillot et al. (2004) (LURE) have

measured the changes in X-ray diffraction intensities of

selected reflections for �-quartz in an E-field to analyze the

reorganization of atoms within a unit cell. Unfortunately, the

works mentioned above were not supported by any kind of

microscopic theory explaining the physical meaning of the

measured quantities.

Another important problem in the study of the electric-

field-induced microscopic structural changes by means of

X-ray diffraction consists in the expensive and time-



consuming character of the measurements. Because an

external E-field is much smaller than an inner-crystal field, the

induced changes of the structure factors are tiny as well.

Therefore, synchrotron radiation is required to reduce the

statistical error � = 2/N1/2 of the reflection intensity (N is the

total number of photons registered by the detector) and to

accumulate a number of photons sufficient to detect the effect.

It is clear that the number of reflections, which can be

measured in a reasonable synchrotron beamline time, is

restricted. Therefore, an optimum strategy of data collection is

required based on a proper selection of the most field sensitive

structure factors.

The aim of this work is to analyze the response of a crystal

to an external E-field on a microscopic level, to predict the

corresponding change of diffraction intensities and to work

out the optimum strategy for an X-ray diffraction experiment.

Firstly, we apply a perturbation theory to describe the beha-

vior of crystal electron and nuclear subsystems under a

permanent external E-field. Then, the obtained results are

used for the analysis of the corresponding change of the X-ray

diffraction intensities. Finally, we present an optimal strategy

for data collection and treatment.

2. The response of the crystal electrons to a permanent
external electric field

Let us consider a crystal without an applied E-field. In the

Born–Oppenheimer approximation, the non-relativistic

wavefunctions of a crystal in the electronic ground state can be

presented as a product of electron j0i and nuclear jAi wave-

functions. The ground-state one-electron density averaged

over the thermal motion is given by the following expression

(Maradudin et al., 1971; Tsirelson & Ozerov, 1996):

h�ðrÞi ¼

P
A expð�"A=kBTÞh0Aj�̂�ðrÞj0AiP

A expð�"A=kBTÞ
: ð1Þ

Here j0Ai is the many-particle wavefunction of the crystal

corresponding to the electronic ground state and nuclear

vibrational state with the energy "A, kB is the Boltzmann

constant and T is the absolute temperature, �̂�ðrÞ ¼
P

i �ðr� riÞ

is the operator of the electron density, �ðrÞ is the Dirac func-

tion, and vectors frig indicate the positions of electrons in a

crystal. The expression

�ðr;AÞ ¼ h0Aj�̂�ðrÞj0Ai ð2Þ

represents a static ground-state electron density of a crystal at

the fixed nuclear configuration.

The interaction of a crystal with a permanent external

electric field E is described by the Hamiltonian

ŴWðEÞ ¼ �eE
P
m�

Z�Rm� þ eE
P

i

ri: ð3Þ

Here e and eZ� are the absolute values of the electron and

nuclear charges, respectively, m marks all unit cells of a crystal,

� enumerates the nuclei within any unit cell and i runs over all

electrons of the crystal. In terms of a stationary perturbation

theory (Landau & Lifshits, 1977), the wavefunction of a crystal

in an external electric field can be presented as a superposition

of unperturbed wavefunctions:

j0AðEÞi ¼
P

n

P
B

cnB;0AðEÞjnBi; ð4Þ

n runs over the electronic states and B runs over corre-

sponding nuclear vibrational states. The expansion coefficients

cnB;0AðEÞ are (Sakurai, 1994)

cnB;0AðEÞ ¼
hnBjŴWEj0Ai

h- !0A;nB

; ð5Þ

where h- !0A;nB ¼ h- !0A � h- !nB is the energy difference

between the 0A and nB states.

Substituting (5) into (4) and then into (2) and considering

the first power of the perturbation only, one can express the

polarization of an electron and nuclear subsystems in an

external E-field as

��ðr;AÞ ¼
P
nB

½h0Aj�̂�ðrÞjnBihnBjŴWEj0Ai

þ h0AjŴWEjnBihnBj�̂�ðrÞj0Ai�ðh- !0A;nBÞ
�1: ð6Þ

The meaning of this expression becomes clearer if one re-

writes it in the following form:

��ðr;AÞ ¼
P
B

½h0Aj�̂�ðrÞj0Bih0BjŴWEj0Ai

þ h0AjŴWEj0Bih0Bj�̂�ðrÞj0Ai�ðh- !ABÞ
�1

þ
P

n6¼0;B

½h0Aj�̂�ðrÞjnBihnBjŴWEj0Ai

þ h0AjŴWEjnBihnBj�̂�ðrÞj0Ai�ðh- !0A;nBÞ
�1 ð7Þ

(h- !AB ¼ h- !A � h- !B is the difference between the nuclear

vibrational energy states). The first sum in (7) includes the

ground-state electron wavefunction only. The other contains

excited electronic states and describes the polarization of the

electron subsystem of a crystal.

3. The response of the X-ray diffraction intensities to a
permanent external electric field

The field-free differential effective cross section of an elastic

X-ray photon scattering from the primary beam directed along

k0 into the secondary beam with direction k1 (Tsirelson &

Ozerov, 1996) is given by:

d�

d�
ðk0 ! k1Þ ¼ p

P
A expð�"A=kBTÞ

P
B jh0BjF̂ðFðHÞj0Aij2P

A expð�"A=kBTÞ
:

ð8Þ

Here p is the polarization factor describing the transition of an

X-ray photon from one polarization state to another,

H ¼ �k=2� is a reciprocal-space vector and

F̂FðHÞ ¼
P

i

expð2�iHr̂riÞ ð9Þ

is the crystal structure-factor operator. The change in the

matrix elements of a structure factor due to an E-field is
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h0Aj�F̂ðFðEÞj0Bi ¼ �
X

nC

h0AjF̂FjnCihnCjŴWðEÞj0Bi

h- !nC;0B

"

þ
X

nC

h0AjŴWðEÞjnCihnCjF̂Fj0Bi

h- !0A;nC

#
: ð10Þ

Transforming (10) in the same way as has been done above for

expression (6), we can separate it into two contributions: the

first one depends on the ground-state electron wavefunction

and includes the nuclear excitations only, while the second one

accounts for the excitations of a crystal electron subsystem

and describes the pure polarization of crystal electrons [see

the second part of (7)]:

h0Aj�F̂ðFðEÞj0Bi ¼ �
X

C

h0AjF̂Fj0Cih0CjŴWðEÞj0Bi

h- !CB

"

þ
X

C

h0AjŴWðEÞj0Cih0CjF̂Fj0Bi

h- !AC

#

þ �
X
n6¼0;c

h0AjF̂FjnCihnCjŴWðEÞj0Bi

h- !nC;0B

"

þ
X
l 6¼0;c

h0AjŴWðEÞjnCihnCjF̂Fj0Bi

h- !0A;nC

#
: ð11Þ

It is worth noting that, for the case of the fixed nuclear posi-

tions, the second two terms in (11) are reduced to the

expression obtained in previous works by Buckingham (1964)

and Tsirelson et al. (2003). These works deal with X-ray

scattering by a free atom in a permanent external E-field. It

has been shown there that the change of the atomic scattering

factor and the scattering intensity in an electric field E of

~5 kV mm�1, which is normally applied in practice, is only

~10�5. It is at least two orders of magnitude smaller than can

be detected by X-ray diffraction (Davaasambuu, 2003). For

the case of a crystal, the numerical estimation of the matrix

elements in (11), related to pure electric polarization, is

difficult. However, they can be directly compared to the

matrix elements associated with the nuclear excitations [the

first part of expression (11)]. Indeed, for non-conducting

crystalline compounds, the minimum electron transition

frequency, h- !nC;0B, is defined by the width of an energy gap,

which amounts to several electronvolts. At the same time, the

difference between the nuclear vibrational states, h- !CB, is

about 10�2 eV. Subsequently, the denominators in the first

part of (11) are roughly two orders lower than those in the

second part. Therefore, the electron polarization of a crystal

can be neglected and the matrix elements in (11) describing

the change in the crystal structure factor due to an E-field can

be written as

h0Aj�F̂ðFðEÞj0Bi � �
X

C

h0AjF̂Fj0Cih0CjŴWðEÞj0Bi

h- !CB

þ
X

C

h0AjŴWðEÞj0Cih0CjF̂Fj0Bi

h- !AC

: ð12Þ

Thus, the change in a nuclear vibrational state of a system due

to an E-field yields the main contribution to the change in

X-ray diffraction intensities.1 To provide an opportunity to

analyze this change in terms of electric-field-induced dis-

placements of nuclear positions, we need to transform the

corresponding matrix elements in (12) and take the sum over

all the nuclear vibrational states. To do that, we have to

introduce a structural crystal model for an electron density

and assume a model for nuclear vibrations.

4. Modeling the electric-field-induced changes in a
pseudoatomic approximation

Using the explicit form of the interaction Hamiltonian (3) and

integrating over electronic coordinates {ri}, we can write the

field-dependent matrix elements in (12) as

h0AjŴWðEÞj0Bi ¼ �eEhAj
P
m�

Z�ðR
ð0Þ
m� þ ûum�Þ

�
R
�ðr; fRgÞr drjBi: ð13Þ

Here ûum� ¼ R̂Rm� � Rð0Þm� are the thermal displacements of

nuclei from their equilibrium position Rð0Þm� without an external

E-field. �ðr; fRgÞ is the ground-state electron density of a

crystal at the fixed nuclear positions {R}. It is convenient to

express the electron-density distribution of a crystal via a

structural model in the form of a sum of rigid pseudoatomic

densities, ��ðrÞ (Stewart, 1976), centered at nuclear sites

�ðrÞ ¼
P
m�

��ðr� R̂Rm�Þ: ð14Þ

Then, the integral in (13) is transformed toR
�ðrÞr dr ¼

P
m�

R
��ðr� Rm�Þr dr ð15Þ

withR
��ðr� Rm�Þr dr ¼

R
��ðrÞr drþ Rm�

R
��ðrÞ dr: ð16Þ

The first term on the right-hand side of (16) defines the

electron contribution to the dipole moment of the �th

pseudoatom: P� ¼ �e
R
��ðrÞr dr. The second integral is

related to a pseudoatomic charge

Q� ¼ e½Z� �
R
��ðrÞ dr�: ð17Þ

With expressions (15)–(17), the matrix elements (13) take the

form

h0AjŴWðEÞj0Bi ¼ �EhAj
P
m�

P� þ
P
m�

Q�ðR
ð0Þ
m� þ ûum�ÞjBi: ð18Þ

The first term inside the brackets defines the electric field

effect on pseudoatomic dipoles in a crystal. For rigid

pseudoatoms, it is constant and does not contribute to the

matrix elements (18) owing to the condition hAjBi ¼ 0.

The second term in (18) is responsible for E-field-induced

pseudoatomic displacements. The operators of the nuclear

displacements ûum� in (18) can be presented as a sum of the
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plane waves corresponding to the phonons in a crystal lattice

(Reisland, 1973; Maradudin et al., 1971):

ûum� ¼
h-

2Nm�

� �1=2X
�

1

!1=2
�

e�� expðiq�Rð0Þm Þb̂b�

h

þe��� expð�iq�Rð0Þm Þb̂b
þ
�

i
: ð19Þ

Here N is the total number of unit cells in the crystal, m� is the

atomic mass of the �th nucleus in the unit cell. Rð0Þm are the

positions of unit cells within a crystal given by the respective

Bravais-lattice vectors. � enumerates 3sN phonon modes,

where s is the number of atoms per unit cell. q� and e�� are the

wavevector and the polarization vector for the phonon mode

�, and b̂b� and b̂bþ� are the phonon creation and annihilation

operators, respectively.

Introducing a notation
P

mðEÞ expðiqaRð0Þm Þ ¼ �ðq�Þ (Born &

Huang, 1954) for the sum over all unit cells, which are

immersed in an electric field, one can rewrite expression (18)

as

h0AjŴWðEÞj0Bi ¼
P
�

EhAjG�b̂b� þG��b̂bþ� jBi; ð20Þ

where G� ¼ �ðh
- =2N!�Þ

1=2�ðq�Þ
P

� Q�e��=m1=2
� .

In the harmonic approximation, the nuclear vibrational

wavefunctions are presented as a product of the single-phonon

wavefunctions, jAi ¼
Q

� jA�i, where A� are the occupation

numbers of the phonon mode �. Using the properties of

phonon creation and annihilation operators (Reisland, 1973),

one can transform (20) into the expression

h0AjŴWðEÞj0Bi ¼
P
�

E½G�B1=2
� hA�jB� � 1i

þG��ðB� þ 1Þ1=2hA�jB� þ 1i�
Q
� 6¼�

hA� jB�i:

ð21Þ

Within the pseudoatomic structural model (14) and the

harmonic approximation, the matrix elements of a crystal

structure factor in (12) can be transformed in a similar way:

h0AjF̂Fj0Bi ¼
P
m�

f�ðHÞ
Q
�

hA�jT̂Tm��ðHÞjB�i

� �
expð2�iHRð0Þm�Þ:

ð22Þ

Here f�ðHÞ is an atomic scattering factor and

T̂Tm�� ¼ exp½iC�m�b̂b� þ iC��m�b̂bþ� �

C�m� ¼
h-

2Nm�

� �1=2 2�He��

!1=2
�

expðik�Rð0Þm Þ:
ð23Þ

Substituting expressions (21) and (22) into (12), we get (see

Appendix A)

h0Aj�F̂ðFðEÞj0Bi ¼
P
m�

f�ðHÞ
Q
�

hA�jT̂Tm��ðHÞjB�i

� �
� expð2�iHRð0Þm�ÞDm�ðEÞ: ð24Þ

Here the function

Dm�ðEÞ ¼
X
�

�iE
C��m�G� þ C�m�G��

h- !�

� �
ð25Þ

describes the influence of an external electric field on an X-ray

scattering intensities.

The X-ray diffraction intensity (8) is represented by the

squared structure factor, averaged over the nuclear vibra-

tional states. With account of (22) and (24), it provides the

following expression for the electric-field-dependent effective

X-ray cross section:

d�E

d�
ðHÞ ¼ p

X
m�

X
n�

f�ðHÞT�ðHÞf
�
� ðHÞT�ðHÞ

� exp½2�iHðRð0Þm� � Rð0Þn� Þ�½1þDm�ðEÞ þD�n�ðEÞ�;

ð26Þ

where the temperature factor is expressed by the standard

form T� ¼ expð�M�Þ with

M� �
2�2kBT

Nm�

X
�

jHe��j
2

!2
�

: ð27Þ

Considering the expression (26), one can conclude that the

structure amplitude of a crystal in an external E-field jFEðHÞj
2

differs from that without a field by the following term:

½1þDm�ðEÞ þD�n�ðEÞ� � expf2�iH½�Rm�ðEÞ ��Rn�ðEÞ�g:

ð28Þ

Here the explicit form of E-field-induced displacements of

nuclei from their equilibrium positions is

�Rm� ¼
X
�

X
�

Q�

2Nðm�m�Þ
1=2!2

�

½ðEe���Þ expðiq�RmÞ�
�
�e��

þ ðEe��Þ expð�iq�RmÞ��e����: ð29Þ

Expression (26) shows that the influence of the E-field on

X-ray diffraction intensities is described by a static Debye–

Waller factor. Note that the derived equations are valid only

within a rigid pseudoatom approximation. Non-rigidity can be,

in principle, taken into account by using the formalism

described by March & Wilkins (1978).

5. The displacement of pseudoatoms related to the
external and internal piezoelectricity

The pseudoatomic displacements, �Rm�, can be separated

into two parts related to an external and internal piezoelectric

effect, respectively. For this purpose, one takes into account

that the lattice sums, ��, in (29) significantly differ from zero

only in the vicinity of the Brillouin zone center, i.e. for small q�
(Born & Huang, 1954) and rapidly decrease to nearly zero

with increasing q�. Expanding the exponents in (29) in Taylor

series and keeping the terms in the first power of q� allows one

to divide the displacements into two contributions:

�Rm� ¼ �R� þ�RðextÞ
m� : ð30Þ

The term
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�R� ¼
X
�

X
�

Q�

2Nðm�m�Þ
1=2!2

�

½ðEe���Þ�
�
�e�� þ ðEe��Þ��e����

ð31Þ

depends on the position of an atom within a unit cell only,

while the term

�RðextÞ
m� ¼

X
�

X
�

Q�iq�Rm

2Nðm�m�Þ
1=2!2

�

� ½ðEe���Þ�
�
�e�� � ðEe��Þ��e���� ð32Þ

depends on the position of a unit cell within a crystal.

Expression (31) depends on the bulk properties of a crystal.

Indeed, the functional behavior of the lattice sum �ðq�Þ is

completely defined by the number of atoms in the whole

crystal, N, and the number of atoms, M, of that part of the

crystal, which is directly affected by an external E-field. In a

one-dimensional case, the set of permitted wavevectors is

defined by qh ¼ ð2�=NÞh, where h is an integer number. The

lattice sum has the value M in the center of the Brillouin zone,

i.e. at h = 0, and drops to zero at h ¼ N=M. In this case,P
q�

�ðq�Þ � 2ðN=MÞðM=2Þ ¼ N, where M/2 is the mean

value of the lattice sum taken over the interval

½�N=M; N=M�. The lattice sum is changing fast with a change

of the wavevector in comparison with a change of the polar-

ization vectors and phonon frequencies. Therefore, replacing

the polarization vectors and phonon frequencies in (31) by

their fixed values taken in the center of the Brillouin zone, we

get:

�R� ¼
X
�ðq�¼0Þ

X
�

Q�ðEe��Þe��

ðm�m�Þ
1=2!2

�

: ð33Þ

The displacement �R� does not depend on the number of

unit cells within a crystal. Thus, expression (33) describes the

internal (on atomic scale) structural changes induced by an

external E-field.

The vectors �RðextÞ
m� are related to external strains and

describe the macroscopic deformation induced by an external

E-field (converse piezoelectric effect). These displacements

are a linear function of the position of a unit cell within a

crystal; therefore, the displacements of the same atoms in

different unit cells are different. The acoustic vibrations give

the major contribution to (32) due to the presence of the pre-

factor q�=!
2
�. That agrees with the fact that a macroscopic

deformation (elastic strains) is directly related to the long-

wavelength acoustic phonons (Born & Huang, 1954). The

approximate expression for the polarization vectors of

acoustic phonons near the Brillouin zone center (Maradudin

et al., 1971)

e�� ¼ m1=2
� eð0Þ� expðiq�R�Þ � m1=2

� eð0Þ� ð1þ iq�R�Þ ð34Þ

allows one to express (32) in the form

�Rð1Þm� ¼
X
�

X
�

Q�iq�Rm

N!2
�

½ðEeð0Þ� Þe
ð0Þ
� ��iq�ðR� � R�Þ�; ð35Þ

where the vectors eð0Þ� do not depend on the position of an

atom within a unit cell. The lattice sum, ��, is supposed to be a

real quantity, which is provided by the proper choice of the

origin of a crystal lattice. The neutrality condition for a unit

cell,
P

� Q� ¼ 0, leads to the final expression for the external

displacements:

�RðextÞ
m� � �RðextÞ

m ¼ �
X
�

~qq�Rm

c2
�

½ðEeð0Þ� Þe
ð0Þ
� ð ~qq�PÞ�; ð36Þ

where P ¼
P

� Q�R� is the dipole moment of a unit cell,

c� ¼ !�=q� is the sound velocity corresponding to a specific

acoustic phonon mode (longitudinal or transverse), ~qq� is the

unit vector, marking the direction of the wavevector,

q� ¼ q� ~qq�.

Equation (36) can be expressed as

�R
ð1Þ
mi ¼

P3

k¼1

P3

j¼1

dkijEkRmj; ð37Þ

where the third-rank tensor with the elements

dkij ¼ �
X
�

~qq�j

c2
�

e
ð0Þ
�ke
ð0Þ
�i ~qq�P ð38Þ

gives the microscopic representation of piezoelectric moduli.

The external atomic displacements (37) describe the macro-

scopic deformation or the change in crystal lattice parameters;

they do not change the relative atomic positions.

6. The change of the diffraction intensities due to
external and internal pseudoatomic displacements

Reduced to a single unit cell deformed by an external E-field,

the diffracted intensity is

jFEðHÞj
2
¼
P
�

P
�

f�ðHÞf
�
� ðHÞT�ðHÞT�ðHÞ exp½2�iHðR� � R�Þ�

� ½1þ 2�iHð�R� ��R�Þ�: ð39Þ

Note that the reciprocal-lattice vectors H differ from their

field-free values and correspond now to the crystal lattice

deformed by external piezoelectricity.

Considering the possibility of tuning the wavelength, the

final expression for the structure factor in an external electric

field takes the form

FEðHÞ ¼
P
�

½f�ðHÞ þ f 0ð	Þ þ if 00ð	Þ�T�ðHÞ expð2�iHR�Þ

� exp½2�iH�R�ðEÞ�; ð40Þ

where f 0ð	Þ; f 00ð	Þ are introduced to account for the anomalous

X-ray scattering.

Expression (40) can be applied for the numerical estimation

of the relative change in X-ray diffraction intensity and

selection of reflections that are expected statistically to have

significant changes in the diffraction intensities. This should be

done under actual experimental conditions, such as the

direction of an E-field relative to a crystal, the wavelength

used for the data collection and others. To do that, we shall

consider separately the influence of external and internal

pseudoatomic displacements on the X-ray diffraction inten-

sity.
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The external pseudoatomic displacements, �RðextÞ
m� , result in

macroscopic changes of a crystal form and the lattice param-

eters while the relative positions of the atoms within a unit cell

remain fixed. The main effect in the diffraction pattern is the

change of the angular position of the diffraction peak

(Graafsma et al., 1993; Hansen et al., 2004)

�
 ¼ � tan 
dkijHiHjEk=H2: ð41Þ

The components of the external E-field vector Ek and the

reciprocal-lattice vector Hj are expressed in the Cartesian

coordinate system associated with the crystallographic set-up

(Nye, 2004).

External atomic displacements also change the length of a

reciprocal-lattice vector H due to the deformation of a crystal

lattice. Correspondingly, the value of the atomic scattering

factor f ðHÞ is also changed: �f ðHÞ � @f ðHÞ=@H�H. The �f

magnitude can be estimated if the piezoelectric coefficients of

the material under study are known. Fig. 1 shows the depen-

dence of the shift in the atomic scattering factor for the Ga

atom in �-GaPO4, owing to the piezoelectric deformation, as a

function of the length of the reciprocal vector. The piezo-

electric coefficients for the right-handed modification of

�-GaPO4 were taken from Krispel et al. (1997). For the typical

strength of an external E-field (5 kV mm�1), the maximal

variation of an atomic scattering factor is ~10�4, i.e. one order

of magnitude smaller than the measured effects. The atomic

Debye–Waller factors change for the same reason. However,

we have found that the corresponding variation in diffraction

intensity for the model system �-GaPO4 is of the order of

10�6.

Expressions (39) can be used to derive relative changes of

the X-ray diffraction intensities due to the internal atomic

displacements, �R�. These displacements (33) are compli-

cated functions of the phonon spectrum and other microscopic

parameters of the electronic subsystem of a crystal, which are

strictly related to each other (Baroni et al., 2001). To clarify

their behavior, we rewrite (33) in the coordinate form, using

the dynamical matrix of the crystal lattice D (Born & Huang,

1954):

�R�i ¼
X
�

Q�

X
�ðq�¼0Þ

e��ie��j

ðm�m�Þ
1=2!2

�

" #
Ej

¼
X
�

Q�D
�1
��
ij

Ej=ðm�m�Þ
1=2

ð42Þ

(i = x, y, z; the Einstein summation rule is assumed). The

displacement tensor

aijð�Þ ¼
P
�

Q�D
�1
��
ij
=ðm�m�Þ

1=2 ð43Þ

allows one to re-write (42) in the form

�R� ¼ âað�ÞE: ð44Þ

In general, the matrix (43) is non-diagonal; therefore, the

atomic displacements (44) are non-parallel to an external

E-field. Apart from the properties of the phonon spectra, the

displacements �R� depend on both the pseudoatomic charge

of the given atom, which adiabatically follows the given

nucleus, and the pseudoatomic charges of the rest of the atoms

within the unit cell. The first mechanism is quantitatively

described by the elements of the matrix D�1
��
ij

, while the second

one is accounted for by those elements of D�1
��
ij

for which

� 6¼ �. In other words, the displacements depend on both the

immediate influence of the electric field on the pseudoatomic

charge and displacements of the neighboring atoms. It is clear

that the first mechanism depends on the value of pseudo-

atomic charge, while the second one depends on the kind and

strength of the chemical bonding in a crystal. It is worth noting

that, in previous works relating to the study of pseudoatomic

displacements in �-SiO2 (Davaasambuu et al., 2003; Davaa-

sambuu, 2003), it was assumed that the Si—O chemical bonds

were rigid. Formulating this semi-empirical approach in terms

of the presented theory, one can say that the displacements

(42), associated with the non-diagonal elements of the dy-

namical matrix, dominate. The validity of such an assumption

for a specific compound, in principle, can be verified by

comparing the diagonal and non-diagonal contributions to the

displacements.

To get the approximate values of the internal pseudoatomic

displacements and corresponding relative changes of the

diffraction intensities, we suppose that the pseudoatomic

fragments vibrate independently from each other relative to

their equilibrium positions. Although this approach contra-

dicts the one assumed by Davaasambuu et al. (2003), it allows

an estimate of the pseudoatomic displacements induced by an

external E-field in a crystal to be easily performed and the

results of the measurements to be predicted. Also, the model

of independent atomic vibrations considered below can serve

either as a starting point for a refinement or as a reference

point to compare it with the final experimental results.

In the harmonic approximation, the effective potential

energy is described by the following expression

� ¼ �0 þ
1
2

P
m�

P
ij

�ijð�Þum�ium�j: ð45Þ

research papers

392 Semen V. Gorfman et al. � Diffraction by a crystal in a permanent electric field Acta Cryst. (2005). A61, 387–396

Figure 1
The change in the values of atomic scattering factors for the Ga atom in
an �-GaPO4 crystal due to the piezoelectric deformation of the crystal
lattice.



This corresponds to the special form of the dynamical matrix,

D, where cross elements between different atoms are zero and

the rest deso not depend on the phonon wavevector

D��
ij
¼ ����ijð�Þ=m�: ð46Þ

The force constant matrix of the �th atom satisfies the

dynamic equationP
j

�ijð�Þe��j ¼ m�!
2
�e��i: ð47Þ

Transforming this expression to the form

e��i

!2
�

¼ m�B
ð�Þ
ik e��k; ð48Þ

where B
ð�Þ
ik ¼ ½�ikð�Þ�

�1 and inserting (48) into (42) and using

the orthogonality of polarization vectors, we arrive at an

approximate expression for the pseudoatomic displacements:

�R�i ¼ Q�Bijð�ÞEj: ð49Þ

In terms of the same independent-atom approximation, the

expression for the field-free temperature factor (27) takes the

standard form

T� ¼ exp½�2�2kBTBijð�ÞHiHj� ¼ expð�2�2U
ð�Þ
ij HiHjÞ; ð50Þ

where polarization vectors and phonon frequencies do not

depend on the wavevector; Uij are the elements of the field-

free thermal displacement tensors in the Cartesian coordinate

system.

The final simplified expression for the electric-field-depen-

dent structure factor is

FEðHÞ ¼
X
�

f�ðHÞ expð�2�2U
ð�Þ
ij HiHjÞ expð2�iHR�Þ

� exp 2�iQ�

U
ð�Þ
ij

kBT
HiEj

 !
: ð51Þ

For the displacements of the pseudoatoms induced by a

permanent external E-field,

�R�i ¼ Q�

U
ð�Þ
ij

kBT
Ej: ð52Þ

The physical interpretation of expression (52) may be

achieved by rewriting it in the form

kBT½U
ð�Þ
ij �
�1�R�j ¼ Q�Ei: ð53Þ

The right-hand side of (53), Q�Ei, is the force acting on the

�th atom from an external E-field, while the quantities

kBT½U
ð�Þ
ij �
�1 can be treated as the force constants for the

effective harmonic atomic potential (Willis & Pryor, 1975).

The longitudinal polarization only will be induced if the

thermal atomic displacements are isotropic or the external

E-field is parallel to one of the major axes of the thermal

ellipsoid. Transverse effects are associated solely with the

anisotropy of atomic thermal displacements.

The field-free parameters of the structural model, i.e. the

components of the atomic thermal displacement tensor U and

the pseudoatomic charges, are usually taken from the results

of a precise X-ray diffraction experiment for E = 0 (Tsirelson

& Ozerov, 1996; Coppens, 1997). For practical purposes, the

model of the structure factor (51) should be reduced to the

model for the relative change in the diffraction intensity

�IE

I
ðHÞ ¼

jFEðHÞj
2 � jFE¼0ðHÞj

2

jFE¼0ðHÞj
2

: ð54Þ

7. Planning the X-ray diffraction experiment in the
presence of an external electric field

Expressions (51) and (54) were applied to estimate the

expected changes of diffraction intensities in �-GaPO4 in an

external E-field. The model parameters for this compound are

given in Table 1. To determine the elements of the displace-

ment tensor U, we have measured intensities of 333 symmetry-

independent reflections in the wavelength ranges 0.65 <

sin 
=	 < 0.75 Å�1 (34 reflections), 0.95 < sin 
=	 < 1.05 �1 (27

reflections) and 1.28 < sin 
=	 < 1.33 Å�1 (272 reflections).

The refinement of the atomic positional parameters and the

elements of the U tensor was carried out with MOLDOS97

(Protas, 1997; Hansen & Coppens, 1978); it resulted in R =

0.011, Rw = 0.013 and goodness of fit S = 0.99. The obtained

displacement parameters are in good agreement with results

of the previous studies dealing with the X-ray diffraction study

of �-GaPO4 (Baumgartner et al. 1984; Litvin et al., 1987)

The set of pseudoatomic charges, Q, presented in model

(51) was derived by integration of the electron density over

Bader’s (1990) zero-flux atomic basins. The electron density of

GaPO4 was calculated using the ‘full-potential augmented-

plane-wave plus local orbitals’ method as implemented in the

WIEN2k program package (Blaha et al., 2001).

The E-field-induced atomic displacements in �-GaPO4 were

evaluated according to (52) for the electric field E =

1 kV mm�1 oriented perpendicular to the (110) Miller plane;

this corresponds to the twofold symmetry axis in the GaPO4

crystal structure and crystallographic direction [110] (Table 2).

These displacements were further used for the calculation of

the structure factors (51) and the corresponding relative

changes in the X-ray diffraction intensities (54). Fig. 2 shows

the distribution of the �I/I values for all the reflections over a

reciprocal space at 	 = 0.80 Å. It turns out that the E-field-

induced change in the majority of reflections in �-GaPO4 is
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Table 1
The elements of the thermal displacement tensor of �-GaPO4 and the
pseudoatomic charges, calculated by integrating of the electron density
within the Bader atomic basins..

Ga P O1 O2

U11 (10�2 Å2) 0.856 (4) 0.834 (5) 1.835 (17) 1.935 (18)
U22 (10�2 Å2) 0.706 (3) 0.615 (5) 1.347 (11) 1.237 (11)
U33 (10�2 Å2) 0.688 (2) 0.656 (5) 1.162 (10) 1.249 (12)
U12 (10�2 Å2) 1

2U
22 1

2U
22 1.084 (11) 1.089 (13)

U13 (10�2 Å2) 1
2U

23 1
2U

23
�0.395 (10) �0.483 (11)

U23 (10�2 Å2) �0.055 (1) �0.041 (3) �0.443 (8) �0.445 (8)
Q (e) 1.62 3.15 �1.19 �1.19



�I/I < 0.1%. At the same time, some reflections show the

relative change of 1.0–2.7%; only very few reflections exhibit

the value of �I/I about 5%. It is remarkable that, by the

proper choice of wavelength, one can exploit the anomalous

dispersion for the enhancement of the sensitivity of the

measured reflection to the structural changes induced by an

external E-field. As an example, Fig. 3 shows the typical

wavelength dependence of the relative intensity variation

for reflection 503010 calculated in the wavelength range 	 =

0.80–1.35 Å.

Thus, only a few reflections in �-GaPO4 exhibit a high

sensitivity to a permanent external E-field, while the majority

of reflections does not provide the information concerning

E-field-induced effects. Examples of both types of these

reflections for �-GaPO4 are given in Table 3: such information

allows us to make a choice of suitable candidates for the

precise measurement and further data analysis. Note that a

similar conclusion is valid for �-quartz.

As is evident from Table 3, the reflections sensitive to the

structural changes, induced by an external E-field, are

normally weak. This observation corresponds to the fact that

the weak reflections are usually related to the fine features of

the crystal structure, such as aspherical electron density and

anharmonic atomic vibration. Reflection �8880, whose scattering

vector is perpendicular to the external E-field direction, can

give especially valuable information, related to the pure

transverse polarization caused by the anisotropy of the atomic

thermal motion. Although the anisotropy of the thermal

motion in GaPO4 is relatively small, the sensitivity of this

reflection is high because of its very low intensity.

Thus, proper experimental planning should include the

following steps: (a) analysis of the diffraction intensity varia-

tion on the basis of the developed model (51); (b) the choice of

reflections with a large diffraction intensity variation in the

applied external E-field; (c) determination of the parameters

of the model (44) using the collected reflections and analyzing

the diffraction intensity variation with this model; (d) since the

model of independent atomic vibration is an estimate for the

atomic displacement and cannot be used as a final result, the

new search for additional significant E-field-sensitive reflec-

tions and additional data collection might be done on the basis

of the refined model parameters. The process can be repeated
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Table 2
The displacements of the pseudoatoms (in the crystallographic coordi-
nate system) induced by an external electric field in �-GaPO4 calculated
on the basis of the independent atomic vibration model (E || [110]) E =
1 kV mm�1.

�R1 (10�5) �R2 (10�5) �R3 (10�5)

Ga1 1.06 0.93 �0.03
Ga2 0.93 1.06 0.03
Ga3 1.18 1.18 0.00
P1 1.94 1.57 �0.04
P2 1.57 1.94 0.04
P3 2.31 2.31 0.00
O11 �1.87 �1.56 0.21
O12 �1.03 �0.82 �0.12
O13 �1.13 �1.66 �0.09
O14 �1.56 �1.87 �0.21
O15 �0.82 �1.03 0.12
O16 �1.65 �1.13 0.09
O21 �1.94 �1.49 0.23
O22 �0.89 �0.73 �0.10
O23 �1.18 �1.78 �0.13
O24 �1.49 �1.94 �0.23
O25 �0.73 �0.89 0.10
O26 �1.78 �1.18 0.13

Figure 3
The wavelength dependence of the relative diffraction intensity variation
for the 503010 reflection.

Table 3
A selection of reflections in �-GaPO4 strongly and weakly affected by an
external E-field (E = 5 kV mm�1) as predicted by a model of independent
atomic vibrations.

N (hkl) �I=I (%) jFj2 	 (Å)

1 (�8880) �5.64 0.0095 0.800
2 (50 �33019) �3.09 0.0225 0.800
3 (�6607) 3.44 0.3380 1.210
4 (�5504) �5.14 0.1711 1.210
5 (�4401) �5.92 0.1304 1.215
6 (�3369) 2.10 0.1234 1.222
7 (�8800012) 0.17 6.9077 0.800
8 (701005) 0.10 14.7342 0.800
9 (�8801005) �0.06 32.4815 0.800

10 (10 �55017) 0.06 46.7512 0.800
11 (100016) 0.01 835.6093 0.800

Figure 2
The distribution of the expected relative diffraction intensity variation in
�-GaPO4 over the reciprocal space at the wavelength 	 = 0.8 Å and
electric field E = 1 kV mm�1



iteratively until a reasonable number of reflections are

collected.

The experimental study of �-GaPO4 based on these pre-

selected reflections will be described in a forthcoming paper

(Gorfman et al., 2005).

8. Conclusions

In the present paper, we present the quantum-mechanical

description of the changes in X-ray diffraction intensities

induced by a permanent external E-field. It is shown that the

major changes are related to the displacement of pseudoatoms

from their equilibrium ‘without-the-field’ positions. The pure

electron polarization is shown to give approximately two

orders lower contribution to the X-ray diffraction intensity

and thus can be normally neglected. The structural E-field-

induced deformations important for the X-ray data treatment

are analyzed in the harmonic approximation and coupled with

the properties of phonon spectra. The microscopic repre-

sentation for the piezoelectric tensor elements is derived. The

simplified model based on the supposition of independent

atomic vibrations is considered and used for the estimation of

pseudoatomic displacements and relative changes in X-ray

diffraction intensities. We show that only a small part of the

reflections exhibits reasonable sensitivity to the structural

changes induced by an external E-field and a strategy for

planning an X-ray diffraction experiment in the presence of an

external electric field is suggested.

APPENDIX A
Derivation of X-ray scattering amplitude of a crystal in
an external electric field

The following matrix elements are to be calculated for addi-

tion to the X-ray structure amplitude (12),

h0Aj�F̂ðFðEÞj0Bi ¼ �
X

c

h0AjF̂Fj0Cih0CjŴWðEÞj0Bi

h- !CB

"

þ
X

c

h0AjŴWðEÞj0Cih0CjF̂Fj0Bi

h- !AC

#
: ð55Þ

The matrix elements for the crystal structure amplitude

between two nuclear states are given by the expression

h0AjF̂Fj0Bi ¼
P
m�

f�ðHÞ
Q
�

hA�jT̂T�m�jB�i

� �
expð2�iHRð0Þm�Þ

ð56Þ

and for the perturbation Hamiltonian

h0AjŴWðEÞj0Bi ¼
P
�

E½G�B1=2
� hA�jB� � 1i

þG��ðB� þ 1Þ1=2
hB�jB� þ 1i�

Q
� 6¼�

hA� jB�i:

ð57Þ

Let us first derive the explicit form for the matrix elements

(57) in the harmonic approximation. Substituting (56) and (57)

into (55), one gets

X
c

h0AjF̂Fj0Cih0CjŴWðEÞj0Bi

h- !CB

¼
X
m�

f�ðHÞ expð2�iHRð0Þm�Þ

�
X
�

Y
� 6¼�

hA� jT̂T�m�jB�i½�EG�B1=2
� hA�jT̂T�m�jB� � 1i

þ EG��ðB� þ 1Þ1=2
hA�jT̂T�m�jB� þ 1i�ðh- !�Þ

�1
ð58Þ

and

X
c

h0AjŴWðEÞj0Cih0CjF̂Fj0Bi

h- !AC

¼
X
m�

f�ðHÞ expð2�iHRð0Þm�Þ

�
X
�

Y
� 6¼�

hA� jT̂T�m�jB�i½�EG�ðA� þ 1Þ1=2
hA� þ 1jM̂M�m�jB�i

þ EG��A1=2
� hA� � 1jM̂M�m�jB�iðh

- !�Þ
1=2
�: ð59Þ

Here we took into account that the energy denominators in

(55) can be expressed through the phonon frequencies as

h- !AB ¼
P

� ðA� � B�Þh
- !�, where A�;B� are the number of

phonons in the given state, described by the nuclear harmonic

wavefunctions jAi and jBi. The expression in the square

brackets of (59) can be transformed and merged with (58) by

using the explicit form for the matrix elements (Maradudin et

al., 1971):

hA�jT̂T�m�jB�i ¼
expð12 jC�m�j

2Þ

ðA�!B�!Þ
1=2
ðiC�m�Þ

B��A�

�
X1
k¼0

ð�1ÞkjC�m�j
2k ðB� þ kÞ!

k!ðB� � A� þ kÞ!
ð60Þ

and the following recurrent relationships that follow from

(60):

ðA� þ 1Þ1=2hA� þ 1jT̂T�m�jB�i ¼ B1=2
� hA�jT̂T�m�jB� � 1i

þ ðiC��m�ÞhA�jT̂T�m�jB�i

A1=2
� hA� � 1jT̂T�m�jB�i ¼ ðB� þ 1Þ1=2

hA�jT̂T�m�jB� þ 1i

þ ð�iC�m�ÞhA�jT̂T�m�jB�i:

ð61Þ

Substitution of (61) into (59) and then (59) and (58) into (55)

gives

h0Aj�F̂FðEÞj0Bi ¼
P
m�

f�ðHÞ
Q
�

hA�jT̂Tm��ðHÞjB�i

� �
� expð2�iHRð0Þm�ÞDm�ðEÞ; ð62Þ

where

Dm�ðEÞ ¼
X
�

�iE
C��m�G� þ C�m�G��

h- !�

� �
: ð63Þ
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